- Interpretable Machine Learning E-book
https://tootouch.github.io/IML/start/
1. Permutation importance
http://bongholee.com/2020/03/permutation-importance-partial-dependence-plot-%EC%A0%95%EB%A6%AC/
2. Partial Dependence Plot (PDP)
https://blog.naver.com/PostView.nhn?blogId=tjdrud1323&logNo=221740255370
3. Individual Conditional Expectation (ICE)
-> PDP도 이해하기 좋음!
4. Shapley values (SHAP)
https://datanetworkanalysis.github.io/2019/12/23/shap1
https://data-newbie.tistory.com/254
https://towardsdatascience.com/explain-your-model-with-the-shap-values-bc36aac4de3d
반응형
'Machine Learning > Algorithm' 카테고리의 다른 글
Prophet (0) | 2021.02.25 |
---|---|
Ensemble learning (Stacking) (0) | 2020.05.06 |
K-nearest neighbors , distance measures (0) | 2020.03.16 |
인공 신경망 (Neural Network) (0) | 2020.03.12 |
Logistic regression (로지스틱 회귀모델) - 2 (학습, 해석) (0) | 2020.03.11 |